Search results for "solar instruments"

showing 2 items of 2 documents

On-Orbit Degradation of Solar Instruments

2013

International audience; We present the lessons learned about the degradation observed in several space solar missions, based on contributions at the Workshop about On-Orbit Degradation of Solar and Space Weather Instruments that took place at the Solar Terrestrial Centre of Excellence (Royal Observatory of Belgium) in Brussels on 3 May 2012. The aim of this workshop was to open discussions related to the degradation observed in Sun-observing instruments exposed to the effects of the space environment. This article summarizes the various lessons learned and offers recommendations to reduce or correct expected degradation with the goal of increasing the useful lifespan of future and ongoing s…

solar instruments[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]010504 meteorology & atmospheric sciencesFOS: Physical sciencesSolar missionSpace weatherSpace (commercial competition)7. Clean energy01 natural sciencesSpace explorationDegradationContaminationObservatory0103 physical sciencesAerospace engineeringInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesbusiness.industryAstronomy and Astrophysicscon- taminationcalibrationspace environment[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceOrbit (dynamics)Environmental scienceAstrophysics - Instrumentation and Methods for AstrophysicsbusinessSpace environmentDegradation (telecommunications)SOLAR PHYSICS
researchProduct

Probing the physics of the solar atmosphere with the Multi-slit Solar Explorer (MUSE): I. Coronal Heating

2022

The Multi-slit Solar Explorer (MUSE) is a proposed NASA MIDEX mission, currently in Phase A, composed of a multi-slit EUV spectrograph (in three narrow spectral bands centered around 171A, 284A, and 108A) and an EUV context imager (in two narrow passbands around 195A and 304A). MUSE will provide unprecedented spectral and imaging diagnostics of the solar corona at high spatial (<0.5 arcsec), and temporal resolution (down to ~0.5s) thanks to its innovative multi-slit design. By obtaining spectra in 4 bright EUV lines (Fe IX 171A , Fe XV 284A, Fe XIX-Fe XXI 108A) covering a wide range of transition region and coronal temperatures along 37 slits simultaneously, MUSE will for the first time …

F300FOS: Physical sciencesF500Astronomy & AstrophysicsACTIVE-REGIONEVENTSFLOWSSolar coronal heating Theoretical models Solar instrumentsINTERFACE-REGIONMAGNETIC RECONNECTIONQB AstronomyTRANSITION REGIONInstrumentation and Methods for Astrophysics (astro-ph.IM)Solar and Stellar Astrophysics (astro-ph.SR)QCQBMCCScience & TechnologyHOT PLASMAAstronomy and Astrophysics3rd-DASALFVENIC WAVESSIMULATIONSQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysical SciencesEUV IMAGING SPECTROMETERAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct